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New Synthetic Technology for the Synthesis of Aryl Scheme 1. Strategy and Presumed Mechanistic Rationale
Ethers: Construction of C-O-D and D-O-E Ring for the Triazene Based Synthesis of Diaryl Ethers
Model Systems of Vancomycin ®) ®) 0O ®)
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The aryl ether linkage is frequently encountered both in
natural products and designed molecules. Much cherhisay o . ) )
recently been extended for the construction of such systems,!! through coordination with a suitable metal counteti(ng.,
particularly as they relate to vancomycin type structdrahese  Cu(l), see structurtll , Scheme 1). This scenario was expected
glycopeptide antibiotics are becoming increasingly important 0 lead to the desired diaryl eth&f via intermediatelV.
as clinical agents against a growing number of drug resistant Tfiazenes are easily prepared and can be converted to a variety
bacterial strains and have been the target of synthesis by severa®f functional groups such as halides, amines, and phénols.
groups? Although several cyclic diaryl ether systems related ~ As demonstrated in Table 1, the triazene approach to aryl
to vancomycin have been reported, a number of challenges stillethers is highly efficient and quite general. After considerable
remain in this field. In this paper we report a new method for experimentation it was d_iscovered tieethaloaryl triazenes react
the construction of aryl ethers and its application to the synthesis Smoothly with phenols in the presence 0fCGO; and CuBf-

of vancomycin {) model D-O-E ©) and C-O-D (5) ring Me,S in MeCN-pyr (ca 5:1) at 80°C to afford, in good to
systems. excellent yields, diaryl ethers and triaryl bis-ethers. It is

interesting to note that 2,6-disubstituted triazenes (entrds86
Table 1) react faster, and often more efficiently, than the corre-
sponding monosubstituted aryl triazenes (entrie$,1Scheme
1). This observation, which is in accord with the proposed
mechanism, can be explained by assuming a preference for
conformation!’ for the o-monosubstituted aryl triazenésn
option not available to the 2,6-disubstituted aryl triazenes. From
among the halides, iodides and bromides exhibited the best
mobilities for this reaction. Thiophenols also enter this process
to produce triaryl bis-thioethers (e.g., entry 13, Table 1).
So0c= The D-O-E vancomycin model systeth(Scheme 2) was
successfully synthesized as followg-Aminobenzoic acid was
converted to the dibromo derivativ& by bromination of its
methyl ester £ 95%). Reduction of with lithium aluminium
hydride gave alcohd (93%) which was subjected to diazoti-
zatior? followed by quenching of the diazonium salt with
pyrrolidine to give triazend in 73% overall yield. Conversion
of 4 to the corresponding azide via a Mitsunobu displacefhent
with PhsP, diethyl diazodicarboxylate (DEAD), and DPPB3, (
82%) was followed by reduction to an amino grétyith PhsP
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The design of this new reaction was based on the mechanistic
rationale shown in Scheme 1. A triazene finitas, thus,
strategically placedartho to a leaving group on the aromatic
nucleus of substrateto serve both as a potential “electron sink”
and to attract the attacking nucleophilic species derived from
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Table 1. Synthesis of Triaryl Ether via Reaction of Triazenes with
Phenols

R ArOH, CuBreSMe,, R
X Y K,CO3; MeCN:pyr.(5:1) A B
R= N=N—I‘O
z z
V1 Vil
VI: Substrate VII: Product Time Yield
Enry X Y Z  ArOH A B (h) (%)
“ H I H PhOH PhO H 16 78
2 H Br H PhOH PhO H 16 65
3 H Br H 0-Cl-CH,0OH 0-CI-CHOH H 16 70
4 H Br H  p-Me-CH,0H p-Me-CHOH  H 16 64
5 H Br H  0-Cl-p-Me-CH,OH o-Cl-p-Me-C;H,0 H 16 67
6 1 1 Me PhOH PhO A 4 83
7° Br Br Me PhOH PhO A 5 89
8" Br Br Br PhOH PhO A 2 9]
9 Br Me Me PhOH PhO Me 5 56
10> Br Br Me o-CI-CH,0H 0-C1-C,H,0 A 5 78
11° Br Br Me p-Me-CH,0H p-Me-C,H,0 A 5 70
12 Br Br Me 0-Clp-Me-CH,OH 0-Cl-p-Me-CH,0 A 4 74
13 Br Br Me PhSH PhS A 4 84
a Amounts: 1.2 equiv of ArOH; 5.0 equiv of CuBBMe,; 5.0 equiv

of K,COs. P Amounts: 2.4 equiv of ArOH; 10.0 equiv of CulBMe;;
10.0 equiv of KCOs.

Scheme 2. Synthesis of D-O-E Cyclic Aryl Etheg?

NH, R HO
Br. Br b Br. Br
_—
NaNO,, HCI,
X C4HgN « o] n
2: X = CO,Me 2 4:X=0H J¢ Ho)Kr NHBoc
3: X = CH,OH 5: X =Nj 3 o
6: X = NHy= d 7
- l |
R= N‘"'”(j EDC/HOBt te
R A HO
Br (o] Br Br
|@ f
o « o "
R CuBreMe,S y
N NHBoc N NHBoc
H o H o
9 8

a Reagents and conditions: (a) 3.0 equiv of LAH, THFE@ 4 h,
93%; (b) 1.3 equiv of NaN@ 5 equiv of 12 N HCI, THFH;O (10:
1), 0°C, 0.5 h; then 10 equiv of pyrrolidine, satd. acpCGQO;s, 1 h,
73%; (c) 1.5 equiv of PP, 1.5 equiv of DEAD, then 1.5 equiv of
DPPA, THF, 25°C, 2 h, 82%; (d) 2.0 equiv of RR, 10 equiv of HO,
THF, 45°C, 8 h, 80%; (e) 1.5 equiv of, 3 equiv of EDC, 1.5 equiv
of HOBt, DMF, 0°C, 8 h, 45%; (f) 2.5 equiv of KCO;, 2.5 equiv of
CuBr-Me;S, 3 equiv of pyridine, MeCN (0.01 M), 7%C, 6 h, 54%
(87% conversion) (DPPA= (PhO}P(O)Ns, EDC = 1-ethyl-3-(3-
dimethylamino)propylcarbodiimide hydrochloride, HOBtN-hydroxy-
benzotriazole).

equiv) in degassed MeCN (0.01 M) at 7& for 3 h, led
smoothly to the D-O-E ring systerl in 54% yield (87%
conversion).

The C-O-D vancomycin model systetd was synthesized
as shown in Scheme 3. (4-Aminophenyl)ethyl alcoli®) (vas
sequentially subjected to bromination, diazotizafi@md reac-
tion with pyrrolidine to furnish the triazengl (84% overall).
Oxidatiort? of the primary alcohol ofl1 with TEMPO and
NaOCI gave the carboxylic acitR in 82% yield. Coupling of
12 with dipeptide13'3 with HBTU and E§N gave tripeptide
14 in 63% vyield. The key cyclization reaction was then

(12) Anelli, P. L.; Biffi, C.; Montanari, F.; Quici, SJ. Org. Chem1987,
52, 2559.

(13) PeptlddS was prepared by couplin@¥tyrosine methyl ester with
N-CBZ-(R)-phenylglycine using EDC and HOBt as coupling reagents in
DMF, followed by deprotection of th&l-terminal CBZ group by hydro-
genolysis using Pd(OH)C (10 mol %) in MeOH (91% overall yield).
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Scheme 3. Synthesis of C-O-D Cyclic Aryl Ethet5?
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@ Reagents and conditions: (a) 2.2 equiv 0f,BxcOH, 25°C, 0.5
h, 99%; (b) 1.3 equiv of NaN©® 5 equiv of 12 N HCI, THFH,O
(10:1), 0°C, 0.5 h; then 10 equiv of pyrrolidine, satd. agGOs, 1 h,
84%; (c) 1.5 equiv of TEMPO, 3 equiv of 5% ag. NaOCI, NaBr cat.,
Me,CO, 0°C, 2 h, 82%; (d) 1.5 equiv of HBTU, 2 equiv of 13, 1.5
equiv of NEt, DMF, 0 °C, 18 h, 63%; (e) 2.5 equiv of &O;, 2.5
equiv of CuBrMe;S, 3 equiv of pyridine, MeCN (0.01 M), 7%, 15
h, 77%; (f) Raney Ni, MeOHA, 2 h, 71%; (g) (it-BUONO, BR+OEb,
THF, =20 to—5 °C, 0.5 h; (ii) Cu(NQ)./Cu,0, H,0, 25°C, 3 h, 60%
(TEMPO = 2,2,6,6-tetramethylpiperidin-1-oxyl. HBT& O-benzo-
triazol-1-yIN,N,N',N'-tetramethyluronium hexafluorophosphate).

performed by exposure df4 to K,CO; (2.5 equiv), CuBft-
Me,S (2.5 equiv), and pyridine (3.0 equiv) in degassed MeCH
(0.01 M) at 75°C for 15 h, furnishing cleanly, and without
significant loss of stereochemical integritithe targeted C-O-D
vancomycin ring model systedb (77%).

Conversion of the synthesized triazenes to the corresponding
phenols under acidic conditions (DowexX Iresin 50WX8-200,
H,O/MeCN, A, 10 min) was demonstrated with several acyclic
aryl systems (e.gV/I, entry 7, Table 1, 92980 However, treat-
ment of the cyclic triazene systeh® with the above conditions
led to only traces of phendl6. After considerable experimen-
tation it was found that reduction 46 with Raney Ni cleanly
furnished the amin&6 (71% yield), which in turn was converted
to the phenoll7 upon diazotization and treatment with Cu(l)/
Cu(ll) (60% from16). The unusual behavior of triazed& is
presumably due to the special conformational preferences of
the monocyclic aryl ether, effects which may not necessarily
be operating in the bicyclic system of vancomycin.

The described chemistry provides a new synthetic avenue to
a wide variety of aryl ethers from readily available aniline
derivatives. The method is mild enough to accommodate
racemization-prone amino acids and to be successfully applied
to the construction of vancomycin type model systems. Further
studies in this field are in progre$s.
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(14) The phenylglycine epimer df4 was prepared in an analogous
manner and cyclized under identical conditions leading to the corresponding
epimer of15. The reaction mixtures of both cyclizations showed,!by
NMR (500MHz), <5% epimerization of the phenylglycine residue.

(15) All new compounds exhibited satisfactory spectral and exact mass
data. Yields refer to spectroscopically and chromatographically homoge-
neous materials.



